
Mathematically, the model state error       is approximated by a sum of L statistically 
independent elements        , each with smaller dimension;

where                                          and       defines a transformation operator 
(e.g.,Figs 5 and 6).   Given their independence, the overall state error covariance 
matrix can be approximated by those of the individual partitions as

where                           .  The smaller dimension of     relative to that of     allows 
for the significant computational savings in approximating      by  (11).    By 
substituting Eq (11) into definitions of the Kalman filter and smoother, the overall 
filter and smoother gains can be approximated by the sum of equivalent operators 
of the individual partitions;

Eq (6) is merely another inverse problem, and can be solved using the filtered 
solution as the first guess as in Eq (2).  The correspondence with Eq (2) is  

where     is the error covariance matrix of model error source (process noise)    .   
By substituting (7) to (2), we have the familiar RTS smoother;

Note, again, the correspondence between Eqs (8) and (2).   From (8) and its 
derivation, the smoothed solution               is shown to satisfy the model physics 
(model constraints; e.g., continuity).   This illustrates the importance of 
explicitly modeling (identifying) model error sources by physically sensible 
processes  (     and     ). The last expression in parenthesis can be rewritten as,

Namely, the smoother (Eq 8) projects (inverts) the sum of the smoother 
correction (increment by formally future data) and filter correction (data 
increment) to the model state and to the model errors (control), backwards in 
time.  Typical formulation of adjoint methods [3, 6] and Green’s function methods 
[5]  provide alternate direct approaches to solving for the controls. 

The Kalman Filter can be recognized as inverting the observations part of the 
simultaneous set of equations (1).  The first guess given by the model, 

is corrected by the observations by 

where,              are error covariance matrices of       and  .  Note the 
correspondence between Eqs (2) and (4).  Combining (3) and (4) describes the 
evolution of the filtered solution;

The first two terms represent the model physics (black curve in Fig 1).  The last 
term is the data increment (red line in Fig 1) that represents errors in the first two 
terms; however, which of the two or what component of the two the last term 
corresponds to is not determined.  

The least-squares solution to a generic (linear) inverse problem         is;

The Mathematical Problem and Its Solution
The data assimilation problem can be identified as an inverse problem of solving a 
set of simultaneous equations for the model state (vector x) and model errors 
(control vector u), as a function of time, given observations (vector y) and the 
theoretical relationships among the elements (H, A, G) (Eq 1). 
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Physical Consistency
Temporal evolution of most data assimilated solutions, including results of the 
Kalman filter, are not physically consistent; e.g., changes in energy and mass 
cannot fully be accounted for.  Such inconsistencies are often ignored or forgotten, 
but the deficiencies are important especially when data assimilated solutions are 
used to understand mechanisms of ocean circulation, such as heat and tracer 
balances [3, 4].  The problem is illustrated by examples in Figures 1, 2, 3, and 4.   
The mathematical problem and its solution are described in the next section.

Fig 1: Schematic of Model State Evolution (e.g., Temperature). Most sequential 
assimilation methods integrate the model in time (black) and correct the state 
according to observations when available (red).  The black model evolution is 
physically accounted for, such as by advection, mixing, and external forcing.  

However, the red data corrections are not identified by any particular process, but 
are supposed to reflect implicit combinations of the effects of various model errors 
(errors in advection, mixing, and forcing).  The blue smoothed estimate inverts the 
red data corrections and explicitly corrects the state and model errors, that result in 

a state evolution that can be dynamically and physically accounted for (blue).

Fig 4: CO2 Sea-Air Flux During the ‘97-’98 El Nino Derived from ECCO-2 [4] . 
The filtered solution’s (left) unrealistically large CO2 flux during ENSO (due to 

inconsistencies in circulation) is corrected in the smoothed estimate (r ight).   
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Fig 2: Atmospheric Mass Budget (NCEP re-analysis).
Standard deviation of surface pressure for 6-hour forecast (left) and 6-hourly data 

increments (r ight). On average 24% of mass change every 6-hours is not physically 
accounted for in the NCEP re-analyses. 
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Fig 3: Physical Consistency of Model Temperature Evolution.
Temperature budget in the tropical Pacific Ocean (100-150m, 5°S~5°N, 150°W~90°W) 

based on a data assimilated estimate (ECCO-2, [2]).  Time-integration (sum) of 
Kalman filtering data increments is as large as the effects of model physics (left).   

In comparison, temperature of the smoothed estimate (right) is consistent with 
model physics (black and blue curves are coincident).  
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The Rauch-Tung-Striebel Fixed-Interval Smoother can be identified as 
projecting the last term in (5) to the elements of the first two by inverting the 
model equations using the filtered solution as a first guess.  After filtering is 
performed to the end,               we look for a new solution  backwards in 
time that satisfies the model equations; 
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The Partitioned Kalman Filter (PKF) and Smoother (PS) [1]
The central difficulty of Kalman filtering is the computational evaluation of the time-
evolving state error covariance matrix       that requires a number of operations 
proportional to the cube of the matrix’s dimension.   Then, a significant 
computational savings can be achieved by approximating by a sum of smaller 
independent elements that are evaluated separately from each other and then 
combined together.  For instance, small-scale errors in the North Atlantic may be 
evaluated separately from those of the North Pacific, etc.  If the state (dimension N) 
is partitioned into L equal elements, each partition will require operations 
proportional to (N/L)3 to evaluate the error covariance.  Combined together with 
other partitions, the overall operation count will be proportional to N3/L2 instead of 
N3, which is a savings by a factor L2. 
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Likewise, the filter and smoother increments can be approximated by sums of 
equivalent increments of separate partitions.  

(13)

Fig 5: Example of Partitioning (left) and Skill of Partitioned Smoother (r ight) .
A PKF/PS is constructed for a 1-dimensional non-rotating shallow water model in [1].  

The partitioning consists of a global coarse cell (a) and overlapping local fine cells 
(b) that estimate large-scale and small-scale errors, respectively (left).  Assimilation 
of sea level (twin experiment) results in non-trivial improvements in velocity (right);  

Results of PS (red) are nearly indistinguishable from a global fine grid smoother 
(blue).  Dashed lines are corresponding formal error estimates. (The green curve is 

a global coarse grid smoother based on (a) alone.)  
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Fig 6: Partitioning Employed in the ECCO-2 PKF/PS [2] .
The global domain is decomposed into eight partitions that consist of seven overlapping 

regional cells and a single global cell.  Model state error and process noise (control 
modeled as wind error) are estimated separately within each partition.  Each 

partitioned filter/smoother is itself a reduced-state filter/smoother based on coarse-
grid vertical dynamic mode decomposition.  Regional state reductions consist of the 

first 5 baroclinic modes on a coarse grid (5º × 3º).  The global cell consists of 
barotropic velocity and corresponding sea level error estimates on a 6º × 6º grid.   

Conclusion 
Understanding the nature of model errors and establishing sensible models 
(approximations) of these uncertainties are central to the consistency and 
computational efficacy of data assimilation.  

Temporal evolution of data assimilated state estimates (    in Eq 1) are physically 
inconsistent when the corresponding source of the model errors (process noise, 
system error, etc;     in Eq 1) are not determined.  Inconsistencies, such as physical 
imbalances, can result in spurious inferences.  The smoother coherently solves 
both errors of the state and errors of the model (Eq 8).  Such estimation requires 
explicit modeling of model error sources by specific physical and numerical 
processes (e.g., forcing error, finite difference error, etc;   in Eq 1).  

The partitioned Kalman filter (PKF) and partitioned smoother (PS) provide practical 
means for data assimilation using global state-of-the-art resolution models.  
Identifying sensible partitioning of model errors (Eq 10; e.g., Figs 5 & 6) is key to 
the efficacy of PKF/PS. 
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